图的存储
  
在 OI 中,想要对图进行操作,就需要先学习图的存储方式。
约定
本文默认读者已阅读并了解了 图论相关概念 中的基础内容,如果在阅读中遇到困难,也可以在 图论相关概念 中进行查阅。
在本文中,用 \(n\) 代指图的点数,用 \(m\) 代指图的边数,用 \(d^+(u)\) 代指点 \(u\) 的出度,即以 \(u\) 为出发点的边数。
直接存边
方法
使用一个数组来存边,数组中的每个元素都包含一条边的起点与终点(带边权的图还包含边权)。(或者使用多个数组分别存起点,终点和边权。)
参考代码
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42  | #include <iostream>
#include <vector>
using namespace std;
struct Edge {
  int u, v;
};
int n, m;
vector<Edge> e;
vector<bool> vis;
bool find_edge(int u, int v) {
  for (int i = 1; i <= m; ++i) {
    if (e[i].u == u && e[i].v == v) {
      return true;
    }
  }
  return false;
}
void dfs(int u) {
  if (vis[u]) return;
  vis[u] = true;
  for (int i = 1; i <= m; ++i) {
    if (e[i].u == u) {
      dfs(e[i].v);
    }
  }
}
int main() {
  cin >> n >> m;
  vis.resize(n + 1, false);
  e.resize(m + 1);
  for (int i = 1; i <= m; ++i) cin >> e[i].u >> e[i].v;
  return 0;
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25  | class Edge:
    def __init__(self, u = 0, v = 0):
        self.u = u
        self.v = v
n, m = map(int, input().split())
e = [Edge() for _ in range(m)]; vis = [False] * n
for i in range(m):
    e[i].u, e[i].v = map(int, input().split())
def find_edge(u, v):
    for i in range(m):
        if e[i].u == u and e[i].v == v:
            return True
    return False
def dfs(u):
    if vis[u]:
        return
    vis[u] = True
    for i in range(m):
        if e[i].u == u:
            dfs(e[i].v)
  | 
 
 
 
 
 
复杂度
查询是否存在某条边:\(O(m)\)。
遍历一个点的所有出边:\(O(m)\)。
遍历整张图:\(O(nm)\)。
空间复杂度:\(O(m)\)。
应用
由于直接存边的遍历效率低下,一般不用于遍历图。
在 Kruskal 算法 中,由于需要将边按边权排序,需要直接存边。
在有的题目中,需要多次建图(如建一遍原图,建一遍反图),此时既可以使用多个其它数据结构来同时存储多张图,也可以将边直接存下来,需要重新建图时利用直接存下的边来建图。
邻接矩阵
方法
使用一个二维数组 adj 来存边,其中 adj[u][v] 为 1 表示存在 \(u\) 到 \(v\) 的边,为 0 表示不存在。如果是带边权的图,可以在 adj[u][v] 中存储 \(u\) 到 \(v\) 的边的边权。
参考代码
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35  | #include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<vector<bool> > adj;
bool find_edge(int u, int v) { return adj[u][v]; }
void dfs(int u) {
  if (vis[u]) return;
  vis[u] = true;
  for (int v = 1; v <= n; ++v) {
    if (adj[u][v]) {
      dfs(v);
    }
  }
}
int main() {
  cin >> n >> m;
  vis.resize(n + 1, false);
  adj.resize(n + 1, vector<bool>(n + 1, false));
  for (int i = 1; i <= m; ++i) {
    int u, v;
    cin >> u >> v;
    adj[u][v] = true;
  }
  return 0;
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17  | vis = [False] * (n + 1)
adj = [[False] * (n + 1) for _ in range(n + 1)]
for i in range(1, m + 1):
    u, v = map(lambda x:int(x), input().split())
    adj[u][v] = True
def find_edge(u, v):
    return adj[u][v]
def dfs(u):
    if vis[u]:
        return
    vis[u] = True
    for v in range(1, n + 1):
        if adj[u][v]:
            dfs(v)
  | 
 
 
 
 
 
复杂度
查询是否存在某条边:\(O(1)\)。
遍历一个点的所有出边:\(O(n)\)。
遍历整张图:\(O(n^2)\)。
空间复杂度:\(O(n^2)\)。
应用
邻接矩阵只适用于没有重边(或重边可以忽略)的情况。
其最显著的优点是可以 \(O(1)\) 查询一条边是否存在。
由于邻接矩阵在稀疏图上效率很低(尤其是在点数较多的图上,空间无法承受),所以一般只会在稠密图上使用邻接矩阵。
邻接表
方法
使用一个支持动态增加元素的数据结构构成的数组,如 vector<int> adj[n + 1] 来存边,其中 adj[u] 存储的是点 \(u\) 的所有出边的相关信息(终点、边权等)。
参考代码
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38  | #include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<vector<int> > adj;
bool find_edge(int u, int v) {
  for (int i = 0; i < adj[u].size(); ++i) {
    if (adj[u][i] == v) {
      return true;
    }
  }
  return false;
}
void dfs(int u) {
  if (vis[u]) return;
  vis[u] = true;
  for (int i = 0; i < adj[u].size(); ++i) dfs(adj[u][i]);
}
int main() {
  cin >> n >> m;
  vis.resize(n + 1, false);
  adj.resize(n + 1);
  for (int i = 1; i <= m; ++i) {
    int u, v;
    cin >> u >> v;
    adj[u].push_back(v);
  }
  return 0;
}
  | 
 
 
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19  | vis = [False] * (n + 1)
adj = [[] for _ in range(n + 1)]
for i in range(1, m + 1):
    u, v = map(lambda x:int(x), input().split())
    adj[u].append(v)
def find_edge(u, v):
    for i in range(0, len(adj[u])):
        if adj[u][i] == v:
            return True
    return False
def dfs(u):
    if vis[u]:
        return
    vis[u] = True
    for i in range(0, len(adj[u])):
        dfs(adj[u][i])
  | 
 
 
 
 
 
复杂度
查询是否存在 \(u\) 到 \(v\) 的边:\(O(d^+(u))\)(如果事先进行了排序就可以使用 二分查找 做到 \(O(\log(d^+(u)))\))。
遍历点 \(u\) 的所有出边:\(O(d^+(u))\)。
遍历整张图:\(O(n+m)\)。
空间复杂度:\(O(m)\)。
应用
存各种图都很适合,除非有特殊需求(如需要快速查询一条边是否存在,且点数较少,可以使用邻接矩阵)。
尤其适用于需要对一个点的所有出边进行排序的场合。
链式前向星
方法
本质上是用链表实现的邻接表,核心代码如下:
参考代码
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44  | #include <iostream>
#include <vector>
using namespace std;
int n, m;
vector<bool> vis;
vector<int> head, nxt, to;
void add(int u, int v) {
  nxt.push_back(head[u]);
  head[u] = to.size();
  to.push_back(v);
}
bool find_edge(int u, int v) {
  for (int i = head[u]; ~i; i = nxt[i]) {  // ~i 表示 i != -1
    if (to[i] == v) {
      return true;
    }
  }
  return false;
}
void dfs(int u) {
  if (vis[u]) return;
  vis[u] = true;
  for (int i = head[u]; ~i; i = nxt[i]) dfs(to[i]);
}
int main() {
  cin >> n >> m;
  vis.resize(n + 1, false);
  head.resize(n + 1, -1);
  for (int i = 1; i <= m; ++i) {
    int u, v;
    cin >> u >> v;
    add(u, v);
  }
  return 0;
}
  | 
 
 
复杂度
查询是否存在 \(u\) 到 \(v\) 的边:\(O(d^+(u))\)。
遍历点 \(u\) 的所有出边:\(O(d^+(u))\)。
遍历整张图:\(O(n+m)\)。
空间复杂度:\(O(m)\)。
应用
存各种图都很适合,但不能快速查询一条边是否存在,也不能方便地对一个点的出边进行排序。
优点是边是带编号的,有时会非常有用,而且如果 cnt 的初始值为奇数,存双向边时 i ^ 1 即是 i 的反边(常用于 网络流)。
  
 
 
   
  本页面最近更新:,更新历史
  发现错误?想一起完善? 在 GitHub 上编辑此页!
  本页面贡献者:Ir1d, sshwy, Xeonacid, partychicken, Anguei, HeRaNO
  本页面的全部内容在 CC BY-SA 4.0 和 SATA 协议之条款下提供,附加条款亦可能应用